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Abstract 
A convenient, two-step synthesis of the 5,8-dimethyl-dibenzo[b,j][1,10]phenanthrolines is presented. The first step is a Buchwald-Hartwig 

amination of 1,2-dibromobenzene and 2’-Aminoacetophenone to produce 1,1’-((1,2-phenylenebis(azanediyl))bis(2,1-phenylene))bis(ethan-1-

one), which is converted to the final product via a ring-closing reaction. The overall reaction yield is 63%. The complexation of 5,8-dimethyl-

dibenzo[b,j][1,10]phenanthrolines with 2,2’-bipyridine-4,4’-dicarboxylic acid (dcbpy) and Ru Ru(DMSO)4Cl2 is also reported and the Ru 

complex might be used to prepare a nanoscale thin film for dye-sensitives solar cell and other optoelectronic devices. 
Keywords: Phenanthrolines, Polycyclic Aromatic Hydrocarbons, Synthesis, Dehydrogenation. 

Abbreviations: PAHs-Polycyclic Aromatic Hydrocarbons, DSSCs-Dye-Sensitive Solar Cells, DMF-Dimethylformamide,  

NMR-Nuclear Magnetic Resonance, CI-Chemical Ionization. 

Dibenzo[b,j][1,10] phenanthrolines are an interesting group of 

compounds. They have the potential to combine the properties of 

Polycyclic Aromatic Hydrocarbons (PAHs) with the flexibility of 

coordination complexes. The compounds have been used in 

macrocycles to inhibit telomerases and destabilize DNA, can activate 

nucleases when used in copper (II) complexes, and have been shown to 

readily form coordination complexes with ruthenium [1-4].  

 

The ruthenium complex could be used as a sensitizing dye to improve 

the efficiency of the Dye-Sensitive Solar Cells (DSSCs) and others. 

However, the current applications of dibenzo[b,j][1,10]phenanthrolines 

are rather limited, potentially because of the low synthetic yield. 

 

Introduction of two methyl groups on 

dibenzo[b,j][1,10]phenanthrolines, i.e. synthesis of 5,8-dimethyl-

dibenzo[b,j][1,10]phenanthroline (compound 1, Scheme 1), is an 

important step in the applications of this type of chemicals since the 

methyl can be readily converted to other functional groups, such as -

CH2Cl, -COOH, for the synthesis of dibenzo[b,j][1,10] 

phenanthrolines derivatives. 

 
2               1 

Scheme 1: Palladium-catalyzed dehydrogenation to produce 5,8-

dimethyl-dibenzo[b,j][1,10]phenanthroline (1). 

 

Several methods have been reported on the synthesis of 1 and its 

relatives, and the best method appeared to be the one reported by 

Kempter and Stoss according to the yield. It involved a Friedländer 

condensation, followed by a palladium-catalyzed dehydrogenation of 

the product [5-12]. 

The Friedländer condensation proceeded with high yields and no 

difficulty, but yields from literature for the palladium-catalyzed 

dehydrogenation from 2 (Scheme 1) were quite low (10-20%). 

Conditions for this reaction relied on elevated temperatures (210°C), 

which have a high potential for unwanted side reactions on a 

compound of this type, potentially explaining the low yield. No 

conversion was seen at lower temperatures in methanol, toulene, 

xylenes, 1,2-dichlorobenezene, acetic acid, and decalin. Decomposition 

was seen in nitrobenzene, and limited yield (10%) was seen in 

isocetane. This indicates a high activation energy barrier for the 

reaction. 

 

Dehydrogenation to introduce an olefinic bond can be done via 

oxidation with a number of different standard oxidizing agents. 

However, all of our attempts on similar systems to generate compound 

1 from 2 have failed. Another more effective method of 

dehydrogenation via bromination/dehydrobromination under mild 

conditions was pioneered by Barnes in 1948.  However, since the 

benzylic positions at C6/C7 and the methyl groups are equally reactive, 

making 1 directly from 2 via this process was not successful unless the 

methyl is protected, and subsequent reduction is also effective on the 

central bond [13-16]. 

 

In this work, we report a novel two-step reaction with a total 63% yield 

starting from 1,2-dibromobenzene and 2’aminoacetophenone (Scheme 

2). The first step is a Buchwald-Hartwig amination. Our results show 

that when 2,2’-bis(diphenylphosphino)-1,1’binaphthyl (BINAP) was 

used,  reaction yields up to 60% of 3 were achieved, with 2-

dicyclohexylphosphino-2,4,6-triisopropylbiphenyl (XPhos) proving far 

more successful, with yields>80% under the proper conditions. The 

reaction was optimized using a procedure developed for this ligand in 
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Buchwald’s lab, using stoichiometric amounts of water to activate the 

Pd(OAc)2/XPhos precatalyst system [17-19]. 

 

 
Scheme 2: Buchwald-Hartwig amination of 1,2-dibromobenzene with 

2’-aminoacetophenone to 3 and 6-exo-trig ring closing reaction of 3 to 

1. 

This allowed a 90% yield and the reaction time to be accelerated from 

4-6 days using the Ullmann reaction to overnight [20]. NMR analysis 

of the reaction mixture shows that the individual displacements behave 

semi-sequentially, with monosubstitution being preferentially followed 

by monosubstitution of another molecule, rather than disubstitution of 

the same. It is noteworthy that attempts to use (tBu)3P as the ligand 

failed, as β-arylation proved to be an inescapable byproduct from the 

reactive acetyl functionalities. 

 

The second step is the ring-closing reaction of 3. A synthesis listed in a 

paper published in 2012 seemed promising, as it used a targeted Lewis 

acid (AlCl3) along with a strong Brönsted acid. In the past, every 

substrate to date using this combination was a substituted 

anthraquinone of some kind, which have very different properties from 

diphenyl ketones or diphenylamines [21-24]. However, this reaction 

still turned out to be quite successful for the synthesis of 1. The 

reaction starts with a eutectic mixture of AlCl3 and NaCl that melts at 

110°C. This dissolves the substrate, and can then be carefully diluted 

with 4M HCl to finish the reaction (Scheme 2). Yields were 

surprisingly good (70%), and the reaction yielded a clean product 

without chromatography. 

 

Although many acids have been used to crosslink acetophenone with 

benzene rings, most of them proved unsuccessful in making 1. 

Phosphoric acid, sulfuric acid, and Eaton’s reagent produced 

decomposition and a complicated mixture of products. Acetic acid 

catalyzed by sulfuric acid caused the formation of carboxylic acid 

byproducts before the desired target could be formed [25-29]. 

Trifluoroacetic acid formed an unidentified product upon reaction with 

3. Weak Lewis acids such as In(III), Sn(II), and even Fe(III) also 

produced no results. Imidazolium-based ionic liquids and deep eutectic 

salts, such as that formed between choline chloride and ZnCl2, failed to 

react as well. 

 

Complexation reactions to make a Ruthenium complex are chemically 

quite straightforward. A metal precursor is chosen with coordinating 

ligands sufficiently labile to be displaced by the incoming nucleophile. 

Minimum necessary conditions were tested by mixing one equivalent 

of 1 with one equivalent of Ru(DMSO)4Cl2 in polar solvent systems 

with ever increasing boiling points. While 2,2’-bipyridine-4,4’-

dicarboxylic acid (dcbpy) would readily coordinate in as mild 

conditions as refluxing 1,2-dichloroethane, 1 failed to coordinate until 

refluxing N,N-dimethylformamide (DMF). Even then, coordination 

was so slow as to take multiple days, so conditions were increased to 

ethylene glycol. In hot (170
°
C) ethylene glycol, the coordination takes 

less than 30 minutes. Therefore, these conditions were used to create 

the chloride salt of the final ruthenium complex, with a final reaction in 

DMF to make the thiocyanate (Scheme 3). 

 

 
Scheme 3: Coordination of 1 to its ruthenium complex. 

 

The DSSC devices based on this Ru complex will be studied and 

reported in the future. Also, further synthesis could create a library of 

derivatives that could yield much more insight into this system. This 

could be used to compare the effect of planarity on the efficiency of the 

solar cell. By comparing dibenzophenanthroline, 

dihydrodibenzophenanthroline, and biquinoline derivatives, a more 

complete picture could be drawn as to the interaction of highly 

aromatic compounds in DSSCs.  

 

Experimental 
 

All reactions were performed under nitrogen unless specified 

otherwise. All chemicals were purchased from Fisher Scientific and 

were used as received. Deuterated solvents were purchased from Acros 

Organics. Nuclear Magnetic Resonance (NMR) spectra were obtained 

on Varian INOVA 300 MHz and 500 MHz NMR spectrometers. Mass 

spectrometry (HRMS) experiments were conducted using Micromass 

AutoSpec M magnetic sector using Chemical Ionization (CI) in 

methane. 

 

1,1’-((1,2-phenylenebis(azanediyl))bis(2,1-phenylene)) 

bis(ethan-1-one) (3) 

Into a round bottom was added palladium (II) acetate (6.6mg, 29.4 

μmol), Xphos (41.7 mg, 87.4 μmol), and potassium phosphate (921 

mg, 4.34 mmol), and an inert atmosphere was established. 3 mL of 

dioxane with 2 μL of water were then added to the round bottom, and 

the orange solution was heated until the color had deepened to a dark 

red. The 1,2-dibromobenzene (327.4 mg, 1.39 mmol) and 2-

aminoacetophenone (420.6 mg, 3.11 mmol) were then added along 

with an addition 3 mL of dioxane, and the reaction was heated to reflux 

overnight. The dioxane was removed in the rotary evaporator, and the 

reaction mixture was resuspended in dichloromethane with added 

Celite. This was filtered and washed with an additional 20 mL of 

dichloromethane.  

 

The dark red solution was then washed with 3 portions of 30 mL 0.8M 

HCl to remove the excess amine, followed by 2 portions of 30 mL of 

water. The resulting brownish solution was dried over magnesium 

sulfate, rotovapped, and chromatographed on silica (30:70 ethyl 

acetate:hexanes) to yield 428.8 mg of yellow solid (90%). 1H NMR 

(499 MHz, Chloroform-d) δ10.33 (s, 2H), 7.73 (dd, J=8.1, 1.6 Hz, 2H), 

7.43 (dd, J=5.9, 3.6 Hz, 2H), 7.27-7.21 (m, 2H), 7.14 (dd, J=5.9, 3.6 

Hz, 2H), 7.03 (dd, J=8.5, 1.1 Hz, 2H), 6.69 (ddd, J=8.1, 7.0, 1.1 Hz, 

2H), 2.55 (s, 6H). MS 344.1.  

 

5,8-dimethyldibenzo[b,j][1,10]phenanthroline (1) 
A round-bottomed flask was placed in a nitrogen glove box and loaded 

with 21.245 g of a finely ground 4:1 mixture (by weight) of dried AlCl3 

and NaCl, respectively. This was then heated at 110
°
C until a clear 

liquid was formed, and then cooled. 2.043 g (5.94 mmol) of 3 was 

added, and the mixture was re-heated until a dark brown solution was 

formed. This was heated for 5 minutes before cooling. Finally, 150mL 

of 4M HCL was slowly added until the solution was completely 

neutralized, and it was reheated for 1 hr. The resulting solution was 

filtered, poured on ice, slowly neutralized with NaHCO3, and filtered 

again to collect the precipitate. The filter cake was washed with water 
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and cold methanol to yield 1.283 mg (4.17 mmol) of yellow solid 

(70.2%).  

 

This was then recrystallized from CH2Cl2/MeOH to yield yellow 

needles. 1H NMR (498 MHz, Chloroform-d) δ8.70 (d, J=8.5 Hz, 2H), 

8.31 (d, J=8.7 Hz, 3H), 8.09 (s, 2H), 7.87 (t, J=7.5 Hz, 2H), 7.70 (t, 

J=7.6 Hz, 2H), 3.16 (s, 6H). MS 308.1. 

 

Ru(1)(dcbpy)NCS2 

Ru(DMSO)4Cl2 (241.3 mg, 0.499 mmol) was added to a round-

bottomed flask, along with 155.2 mg (0.504 mmol) of 1 and 20 mL of 

dry ethylene glycol. This was heated at 170
°
C for 30 min. 4,4-

dicarboxyl-2,2’-bipyridine (125.3 mg, 0.514 mmol) was then added, 

and heating continued for another 2 hours. Finally, 253.2 mg (3.33 

mmol) of NH4NCS was added, and heating continued for another 3 

hours. Once the reaction was cooled, it was diluted with 0.1 M HNO3, 

and placed at 4
°
C overnight. The resulting deep red precipitate was 

filtered, washed with water and acetone, and dissolved in 0.1M 

Na2CO3. This was then re-precipitated with HNO3, filtered, and washed 

again with water and acetone to yield 174.1 mg of red solid (45%) 1H-

NMR (500 MHz, DMSO-d6) d 10.04 (d, J=7.9 Hz, 1H), 9.91 (d, J=8.8 

Hz, 1H), 8.83 (d, J=3.1 Hz, 1H), 8.82 (d, J=1.6 Hz, 1H), 8.57 (d, J=3.2 

Hz, 1H), 8.56 (d, J=0.6 Hz, 1H), 8.46 (d, J=5.4 Hz, 1H), 8.21 - 8.18 (m, 

2H), 7.73 (d, J=5.4 Hz, 1H), 7.47 (s, 1H), 7.28-7.21 (m, 2H), 7.20-7.11 

(m, 2H), 6.18 (d, J=8.2 Hz, 1H), 3.90 (s, 6H). 
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